Section 4.5: Row and column spaces

New vocabulary:

- row space, column space of a matrix
- row rank, column rank, rank
- pivot column
- null space

We learn:

- an algorithm to find a basis for the column space
- an algorithm to find a basis for the row space
- how to find a subset of a spanning set that is a basis
- how to extend an independent set to a basis

Question like Section 4.5 13-16 (and also 1-12)
Find a subset of the vectors

$$
\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]\left[\begin{array}{c}
4 \\
3 \\
-1
\end{array}\right]
$$

that is a basis for the subspace they span.
Overview of the algorithm.
Take the first rector. If it is non-zerd, keep it.
Is the sec and rector dependent on the rectors we have so far (1.e. a scalar mu (tiple of the first).
If dependent, throw it out
IF not, keep it

Is the Bid vector dependent in the first two?
Yes - throw it No - keep -it,
We end with a set of rectors that is independent with the same span as the original vectors.

Question like Section 4.5 13-16 (and also 1-12)
Find a subset of the vectors

$$
\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]\left[\begin{array}{c}
4 \\
3 \\
-1
\end{array}\right]
$$

that is a basis for the subspace they span.
Solution: is rector 2 dependent on vector 1?
Solve $\left.\quad x_{1} \left\lvert\, \begin{array}{c}1 \\ 2 \\ -1\end{array}\right.\right]=\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right]$
Reduce $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ -1 & -2 & 0 & -1\end{array}\right]$

$$
\begin{aligned}
& \text { (2) } \rightarrow \text { (2) }-2(1) \\
& (3) \rightarrow(3)+(1)
\end{aligned}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & -5 & -5 \\
0 & 0 & 3 & 3
\end{array}\right]
$$

We can solve the equation for x, It is consistent, The record vector is dependent in the first. We thou it . Is vector 3 dependent on list 2
No: The row $00-5$? shews The equs are incornstent, Keep vectul 3
Mare reduction, $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0\end{array}\right]$
Is rectar 4 dependent on first 3 ? Yes. Throw it. $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ are a bases for titis space.

Definition: the column space of a matrix A is is the span of the columns of the matrix

Example: the column space of

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3 \\
-1 & -2 & 0 & -1
\end{array}\right]
$$

is the space spanned by the vectors

$$
\left[\begin{array}{l}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
3 \\
-1
\end{array}\right]
$$

Definition: a pivot column of a matrix A is a column of A for which the echelon form of A has a leading entry (or pivot).

Theorem.
The pivot columns of a matrix A form a basis for the column space of A .
Done
Example: The vectors $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right] \in \mathbb{R}^{3}$ are a basis for the column space of A .

Questions:

1. What is the dimension of the column space of the matrix A in the example?
a. $2 \sqrt{ }$ The lairs has 2 elements.
b. 3
c. 4
2. Of what space is the column space of A a subspace?
a. \mathbb{R}^{2}
b. $\mathbb{R}^{3} J$
c. \mathbb{R}^{4}

Pre-class Warm-up!!!
What is the dimension of the column space of the following matrix?

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

a. 0
b. 1
C. 2
d. 3
e. 4

When did we learn the meaning of the word 'basis' for a vector space V ?
a. This reel
b Last week

Definition. The row space of a matrix A is the span of the rows of A.
Example. The row space of $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ -1 & -2 & 0 & -1\end{array}\right]$
is the subspace of $R \wedge 4$ spanned by
$\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right],\left[\begin{array}{llll}2 & 4 & 1 & 3\end{array}\right]$ and $\left[\begin{array}{llll}-1 & -2 & 0 & -1\end{array}\right]$
In the book the row space is spanned by $(1234)=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],(2413) \simeq\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$ and $(-1-20-1)=$ Look at the row space of
(It's quicker to write down!) $\quad\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
It is the set of all vectors
$a\left[\begin{array}{ll}1 & 2\end{array}\right]+b\left[\begin{array}{ll}3 & 4\end{array}\right]$ where $a, b \in \mathbb{R}$
Put it in echelon $\operatorname{form}(2) \rightarrow(2)-3(1)\left[\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right]$
This hat row space all vectors

Theorem 2. The row space of A is not changed by elementary row operations. Hence A has the same row space as its echelon form.

$$
c(1-2]+d[0 \sim 2]
$$

These turo sels of vectors are the same because $\left[\begin{array}{ll}0 & -2\end{array}\right]=\left[\begin{array}{ll}3 & 4\end{array}\right]-3\left[\begin{array}{ll}1 & 2\end{array}\right]$

$$
\begin{aligned}
& \text { so } c(1,2]+d[0-2] \approx c(12]+d((34)-3[12]) \\
& =(c-3 d)[1,2]+d(34]
\end{aligned}
$$

Similarly we can write $a[12]+b(34]$ as a linear combe of $[12],\left[\begin{array}{ll}0 & -2\end{array}\right]$ becourle

$$
\begin{aligned}
& {[3,4]=[0,-2]+3[12]} \\
& a[12]+b(34]=a[12]+b([0,-2]+3[1,2])
\end{aligned}
$$

Question: true or false in general?:
'Let A be a matrix. The column space of A is not changed by elementary row operations. Hence A has the same column space as its echelon form.'

True False

Theorem 2. The row space of A is not changed by elementary row operations. Hence A has the same row space as its echelon form.

Question like Section 4.5, 1-12
Find a basis for the row space of the matrix

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3 \\
-1 & -2 & 0 & -1
\end{array}\right]
$$

Solution. Put it in echelon form

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & -5 & -5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The nonzero rows are now a basis for the
tow space.
They span (row space is unchanged)
They are isclependent: if

$$
\begin{aligned}
& a\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]+b\left[\begin{array}{llll}
0 & 0 & -5 & -5
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \\
& \quad[a, 2 a, 3 a-5 b, 4 a-5 b]=\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right] \\
& a=0,3 a-5 b=0, b=0 .
\end{aligned}
$$

This row space hou dimension 2 as a subspace of \mathbb{R}^{4}

Theorem 2 extra: The non-zero rows of the echelon form of A form a basis for the row space of A

Definition. The row rank of a matrix A is the dimension of its row space.

The column rank of a matrix A is the dimension of its column space.

Theorem. For any matrix A the row rank and column rank are equal.

Example. For the matrix $\quad\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ \text { They are both } 2 \text {. } & -2 & 0 & -1\end{array}\right]$

Definition. The common value of the row rank and column rank of a matrix is called the rank of the matrix.

Proof of the ever:
row rank $=$ number of non-zero rows in the echelon for.
column rank = number of leading entree in the che on firn.
These wee the same

Question like Section 4.5, 17-20.
Find a basis for $R \wedge 3$ that contains the vectors

$$
\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]
$$

solution. (Checle there vectors are independent.)

to get a spanning set for \mathbb{R}^{3}
Find an independent subset, Reduce

$$
\left[\begin{array}{ccccc}
3 & 2 & 1 & 0 & 0 \\
2 & -2 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & 1
\end{array}\right] \stackrel{1}{\stackrel{-(3)}{\longleftrightarrow}}\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 1 \\
2 & -2 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 & 0
\end{array}\right]
$$

$(2) \rightarrow(2)+2(1)$
$(3) \rightarrow(3)+3(1)$$\left[\begin{array}{ccccc}-1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 5 & 1 & 0 & 3\end{array}\right]$
(2) $\leftrightarrow(3)\left[\begin{array}{ccccc}-1 & 1 & 0 & 0 & 1 \\ 0 & 5 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]$

Leadingentres in cols $1,2,4$ $\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is a basis for \mathbb{R}^{3}.

Definition. The nullspace of A is the vector space of solutions to $\mathrm{Ax}=0$.
It might be written Null A.
It isccalled the nullity of A.
Its dumeneron is called
Theorem. For any $\mathrm{m} \times \mathrm{n}$ matrix A , rank A $+\operatorname{dim}$ Null A $=n$
rank $A=$ no, leading envies . nullity $=$ no. of free $\begin{aligned} \text { variables }\end{aligned}$ variables.
Example. Find a basis for the nullspace of

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3 \\
-1 & -2 & 0 & -1
\end{array}\right]
$$

There add to the total number of column is

Question: Have we done this calculation before?
Yes No

Echelon for $\left[\begin{array}{cccc}w & x & y & z \\ 1 & 2 & 3 & 4 \\ 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0\end{array}\right]$
Free variables x and z

$$
\begin{aligned}
y=-z \quad w & =-2 x-3 y-4 z \\
& =-2 x-2
\end{aligned}
$$

$=-2 x-2$
General solution $\left(\begin{array}{l}w \\ x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-2 x-z \\ x \\ -z \\ z\end{array}\right)$

$$
=x\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+z\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right]
$$

$\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 1\end{array}\right]$ is a basis

Definition. The nullspace of A is the vector space of solutions to $\mathrm{Ax}=0$. It might be written Null A . It is called the nullity of A.

Theorem. For any $m \times n$ matrix A, $\operatorname{rank} \mathrm{A}+\operatorname{dim}$ Null $\mathrm{A}=\mathrm{n}$

Example. Find a basis for the nullspace of
$\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ -1 & -2 & 0 & -1\end{array}\right]$

Questions:

Are the following true or false in general for an $\mathrm{n} \times \mathrm{n}$ matrix A ?
a. If A has rank n then $A x=b$ has a solution for every vector b in $R^{\wedge} n$.

Question:
Suppose that A is an $m \times n$ matrix (m rows, n columns) and that $\mathrm{Ax}=0$ has a unique solution. Which of the following statements is sometimes false?
a. The columns of A are linearly independent.
b. The columns of A span a space of dimension n.
c. The columns of A are a basis for the space they span.
d. $\mathrm{m} \leq \mathrm{n}$

